Influence of the membrane lipid structure on signal processing via G protein-coupled receptors.

نویسندگان

  • Qing Yang
  • Regina Alemany
  • Jesús Casas
  • Klára Kitajka
  • Stephen M Lanier
  • Pablo V Escribá
چکیده

We have recently reported that lipid structure regulates the interaction with membranes, recruitment to membranes, and distribution to membrane domains of heterotrimeric Galphabetagamma proteins, Galpha subunits, and Gbetagamma dimers (J Biol Chem 279:36540-36545, 2004). Here, we demonstrate that modulation of the membrane structure not only determines G protein localization but also regulates the function of G proteins and related signaling proteins. In this context, the antitumor drug daunorubicin (daunomycin) and oleic acid changed the membrane structure and inhibited G protein activity in biological membranes. They also induced marked changes in the activity of the alpha(2A/D)-adrenergic receptor and adenylyl cyclase. In contrast, elaidic and stearic acid did not change the activity of the above-mentioned proteins. These fatty acids are chemical but not structural analogs of oleic acid, supporting the structural basis of the modulation of membrane lipid organization and subsequent regulation of G protein-coupled receptor signaling. In addition, oleic acid (and also daunorubicin) did not alter G protein activity in a membrane-free system, further demonstrating the involvement of membrane structure in this signal modulation. The present work also unravels in part the molecular bases involved in the antihypertensive (Hypertension 43:249-254, 2004) and anticancer (Mol Pharmacol 67:531-540, 2005) activities of synthetic oleic acid derivatives (e.g., 2-hydroxyoleic acid) as well as the molecular bases of the effects of diet fats on human health.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Lipid Raft-Mediated Regulation of G-Protein Coupled Receptor Signaling by Ligands which Influence Receptor Dimerization: A Computational Study

G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors; they activate heterotrimeric G-proteins in response to ligand stimulation. Although many GPCRs have been shown to form homo- and/or heterodimers on the cell membrane, the purpose of this dimerization is not known. Recent research has shown that receptor dimerization may have a role in organization of receptors...

متن کامل

Solubilization of G protein-coupled receptors: a convenient strategy to explore lipid-receptor interaction.

G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across cell membranes and are major drug targets. Since GPCRs are integral membrane proteins, their structure and function are modulated by membrane lipids. In particular, membrane cholesterol is an important lipid in the context of GPCR function. Solubilization of integral membrane proteins i...

متن کامل

Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus.

The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven-transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding activity and G-protein coupling of the bovine hippocampal 5-HT(1A) receptor by depleting cholesterol from native membranes using methyl-beta-cyclodextrin (MbetaCD). Removal of choleste...

متن کامل

[Role of lipid rafts in trimeric G protein-mediated signal transduction].

Lipid rafts and caveolae are microdomains in the cell membranes, which contain cholesterol, glycolipids, and sphingomyelin. While caveolae are relatively stable because caveolin, an integral protein, supports the structure, lipid rafts are considered to be unstable, being dynamically produced and degraded. Recent studies have reported that lipid rafts contain many signaling molecules, such as g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 68 1  شماره 

صفحات  -

تاریخ انتشار 2005